
ST793 Project: A Blogpost on “Doubly Enhanced EM

Algorithm for Model-Based Tensor Clustering” by Mai et al

Ayumi Mutoh, Jisu Oh, Shih-Ni Prim

December 7, 2023

1 Introduction

In recent decades, while tensor data have gained popularity in modern science, their high-

dimensional structures often pose challenges for statistical analysis, specifically in model-based

clustering. Model-based clustering is a statistical approach to data clustering, where observed

data is considered to have been created from a finite combination of component models, such

as the Gaussian mixture model (GMM). Since the formalization of the expected-maximization

(EM) algorithm by Dempster et al. (1977), the EM algorithm has been widely employed in

the majority of model-based clustering applications. While the GMMs can be readily extended

to higher-order tensors using the standard EM algorithm, their performance can be further

enhanced by integrating the Doubly Enhanced EM algorithm (DEEM), as proposed by Qing Mai

and Deng (2022). Mai et al. consider a tensor normal mixture model (TNMM) that incorporates

tensor correlation structure and variable selection for clustering and parameter estimation.

They developed the DEEM algorithm which enables DEEM to excel in high-dimensional tensor

data analysis. Similar to the EM algorithm, DEEM carries out an enhanced E-step and an

enhanced M-step.

In this blogpost, we first introduce the DEEM methods with intermediate steps for the

theoretical explanation. The objective is to break down the steps, making the derivation more

accessible for our readers to follow. Subsequently, we will conduct a simulation study to evaluate

the performance of DEEM.

2 Theoretical Derivation

2.1 EM Algorithm

Before delving into DEEM, we would like to review the EM algorithm and its functioning in

clustering.

1

The EM algorithm is an iterative approach that cycles between two steps for maximum

likelihood estimation in the presence of latent variables. The observed data Y is incomplete

and data Z is missing. The first step is to write down the joint likelihood, Lc(θ|Y, Z), of the

“complete” data (Y, Z). The “E” step of the EM algorithm is to compute the conditional

expectation of log-likelihood, logLc(θ|Y, Z), given Y, assuming the true parameter value is θ(ν)

Q(θ, θ(ν), Y) = Eθ(ν)(logLc(θ|Y,Z)|Y).

In the “M” step, we maximize Q(θ, θ(ν), Y) with respect to θ with θ(ν) fixed. We repeat the E

step and M step until convergence.

The EM algorithm is well-known for its use in unsupervised learning problems such as

clustering with a mixture model. The process from Yang et al. (2012) goes as follows:

1. Identify the number of clusters.

2. Define each cluster by generating a Gaussian model.

3. For every observation, calculate the probability that it belongs to each cluster (Ex. obser-

vation 12 has 40% probability of belonging to Cluster A and 60% probability of belonging

to Cluster B.)

4. Use the above probabilities to recalculate the Gaussian models.

5. Repeat until observations “converge” on their assignments.

Let’s consider a simple example. Suppose we have data Xi as shown in Figure 1, which

comes from two distinct classes. We use this data to build a Gaussian model for each class.

Since we don’t know which class each observation belongs to, there is no straightforward way

to construct two Gaussian models to partition the data. Therefore, we begin with a random

guess of our Gaussian model parameters: µ1, σ
2
1, µ2, σ

2
2.

We have ‘missing’ data points Xi that we believe belong to either of the two distributions.

After initializing two random Gaussian models, we compute the likelihood of each observation,

Xi, being expressed in both of the Gaussian models. The next is the E-step, where we compute

the probability that each Xi can belong to any of two distributions. Now we have each point’s

probability of belonging to either distribution.

In the M-step, we update the parameters, µ1, σ
2
1, µ2, σ

2
2, of the model to their most likely

values. For the new µ1, we take a weighted average of all the points, weighted by the probability

that they belong to the first distribution. Denoting pi is the probability that Xi belongs to the

first distribution.

µ1 =
p1X1 + p2X2 + · · ·+ pnXn

p1 + p2 + · · ·+ pn

2

The new σ2
1 can be updated similarly.

σ2
1 =

p1(X1 − µ1)
2 + p2(X2 − µ1)

2 + · · ·+ pn(Xn − µ1)
2

p1 + p2 + · · ·+ pn

We repeat this process for µ2 and σ2
2 and update our distributions. We iterate through the

E-step and M-step until convergence, obtaining two clusters as shown in Figure 2.

Figure 1: Mixture of two Gaussian Distributions

Figure 2: Clusters Found by EM algorithm

3

2.2 Tensor

While the term “tensor” might sound unfamiliar to some, tensors are simply multi-way arrays.

Data is often structured as matrices, and they are in fact second-order tensors. When we use

the term “tensor,” we usually mean tensors of third- and higher-order. The “order” means the

dimension of a tensor, and it is sometimes called the “mode.” You can think of a third-order

tensor as a cube. As shown in Figure 3, a tensor can be manipulated similarly as a matrix.

In a matrix, we can talk about rows and columns. In a third-order tensor, we can talk about

fibers when you fix two modes and keep all values of one mode. The index is then the mode

that has all the values. Slices are when you fix one mode and keep all values for the rest of

the modes. The index is then the mode that is fixed.

Figure 3: Dimensions and Terminology of a Tensor, taken from Kolda and Bader (2009)

Before we continue onto the DEEM algorithm, some concepts and notations are necessary

to understand derivations in the following section. Note that the following notations are taken

from Kolda and Bader (2009). First of all, we should go over the concept of matricization. If we

want to matricize a third-order tensor, we can think of cutting a cube into slices and putting the

slices side-by-side to make them into a matrix. We now borrow an example (Example 2.1) given

in Kolda and Bader (2009) to demonstrate how to matricize a third-order tensor X ∈ R3×4×2:

X1 =

1 4 7 10

2 5 8 11

3 6 9 12

 , X2 =

13 16 19 22

14 17 20 23

15 18 21 24

 .

4

The three mode-n unfoldings/matricizations are then

X1 =

1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

 ,

X2 =

1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24

 ,

X3 =

[
1 2 3 4 5 · · · 9 10 11 12

13 14 15 16 17 · · · 21 22 23 24

]
.

The example above shows that mode-1 unfolding is to put X1 and X2 side-by-side and mode-2

unfolding is to stack on top of each other.

This concept is intuitive but much more awkward when we want to define it formally. In

Kolda and Bader (2009), the mode-n matricization of a tensor X ∈ RI1×I2×···×IM is denoted

by X(n), which is a matrix of the dimension (In,
∏

p̸=In
Ip). (The first dimension comes from

the dimension of mode n, and the second dimension comes from the product of all the other

dimensions.) The tensor element (i1, · · · , iM) is mapped to the matrix element (in, j) in the

following manner:

j = 1 +

M∑
k=1,k ̸=n

(ik − 1)Jk with Jk =

k−1∏
m=1,m ̸=n

Im.

Next, the notation J·K is defined as:

JG;A(1), A(2), · · · , A(M)K := G×1 A
(1) ×2 A

(2) · · · ×M A(M),

where A are matrices andX and G are tensors. The symbol ×n means n-mode (matrix) product

of a tensor G ∈ RI1×I2×···×IM and the matrices A(n) ∈ RJ×In . G×n A
(n) is then a tensor of the

dimension I1 × · · · × In−1 × J × In+1 × · · · × IM . We can write the elements of G×n A(n) as:

(G×n A(n))i1 ··· in−1 j in+1 ··· iN =

In∑
in=1

gi1 i2 ··· iN · a(n)j in
.

Also, for any two tensors A and B in RI1×I2×···×IM , we define their inner product by

⟨A,B⟩ =
∑

J∈I1×I2×···×IN

aJbJ .

5

With that, we are ready to learn about the DEEM algorithm. If you are interested in knowing

more about tensors, Kolda and Bader (2009) has lots of great details. So be sure to check it

out!

2.3 Doubly Enhanced EM Algorithm

In this subsection, we introduce the doubly enhanced EM (DEEM) algorithm and discuss its

theoretical properties. Algorithm 1 from Qing Mai and Deng (2022) is provided in the Appendix

as our Figure 6.

Let Z denote the random tensor in Rp1,×···×pM such that every element in Z is distributed

as iid N(0, 1). Then we say that a random tensor X has a tensor normal distribution, denoted

by X ∼ TN(µ; Σ1, . . . ,ΣM), if X = µ + JZ; Σ
1/2
1 , . . . ,Σ

1/2
M K, where µ ∈ Rp1,×···×pM is the total

mean and each Σi ∈ Rpi×pi means the covariance matrix within ith class. In other words, a

tensor normal regression is multivariate normal distribution generalized to a high dimension.

An M th order random tensor X has a total of
∑M

i=1 pi means and M covariate matrices each

of the dimension pi × pi for i = 1, · · · ,M . We can find that the density of X has the form

p(X|µ; Σ1, . . . ,ΣM) =
1

(2π)p/2|Σ1|qi/2 · · · |ΣM |qM/2
exp

(
−1

2

〈
JX − µ; Σ−1

1 , . . . ,Σ−1
M K, X − µ

〉)
,

(1)

where p = p1p2 · · · pM and qi = p/pi.

We will consider independent tensor-variate observations in Rp1,×···×pM drawn from K clus-

ters with the same within-class covariance matrices; suppose that µi’s are the mean tensor of

the kth cluster. Let πk be the probability of an observation to be taken from the kth cluster.

Then the sample {Xi}ni=1 from a mixture of the tensor normal distributions can be written

as the following:

Xi ∼
K∑
k=1

πkTN(µk; Σ1, . . . ,ΣM), i = 1, 2, . . . , n,

or equivalently,

P (Yi = k) = πkXi|Yi = k ∼ TN(µk; Σ1, . . . ,ΣM), i = 1, 2, . . . , n. (2)

Hence, Yi indicates the number of the cluster from which Xi was taken, and if Yi = k is given,

Xi has the tensor normal distribution with the mean µk of the cluster k and the within-class

covariance matrices Σ1, . . . ,ΣM . (Recall we assume that the clusters have the same within-class

matrices.)

Suppose that {Xi}ni=1 is a sample from the model (2). Let θ = {πi, µi,Σj : 1 ≤ i ≤ K, 1 ≤
j ≤ M} denote the set of all parameters in the model. If we can observe Yi, then the complete

6

log-likelihood can be obtained as follows:

ℓc(θ;X,Y) = log
n∏

i=1

πYip(Xi|µYi ; Σ1, . . .ΣM) =
n∑

i=1

[log πYi + log p(Xi|µYi ,Σ1, . . . ,ΣM)].

But, in general, we cannot observe Yi; hence, from an initial value θ̃(0), we create a sequence

θ̃(t) through the E-step to obtain the Q function

Q(θ; θ̃(t)) = E
Y |X,θ̃(t)

[ℓc(θ;X,Y)] =
n∑

i=1

K∑
k=1

ξ̃
(t)
ik [log πk + log p(Xi|µk,Σ1, . . .ΣM)]

where

ξ̃
(t)
ik = P (Yi = k|X, θ̃(t)) =

π̃
(t)
k p(Xi|µ̃(t)

k , Σ̃
(t)
1 , . . . , Σ̃

(t)
M)∑K

j=1 π̃
(t)
j p(Xi|µ̃(t)

j , Σ̃
(t)
1 , . . . , Σ̃

(t)
M)

(3)

and the M-step to update the parameter

θ̃(t+1) = argmax
θ

Q(θ; θ̃(t)).

Then the EM sequence θ̃(t) converges to the MLE, but there are some issues in our situation:

Getting the updates for πk and µk is quite easy and straightforward, but it is challenging to

obtain the updates for the covariance matrices Σi. When we compute ξ̂
(t)
ik in (3), all the elements

in Xi are used, and the standard EM algorithm does not involve a process for variable selection.

Thus, due to an excessive number of parameters in the model, it may lead to the accumulation

of errors, which potentially results in inaccurate estimates.

To overcome these problems, we introduce the enhanced E-step, where we replace ξ̃
(t)
ik with

an estimator ξ̂(t) that can be calculated relatively faster under the sparsity assumption. We

want to find the objective function QDEEM that has a better property than the standard Q

function above. First, it can be seen that

ξi1 = P (Yi = 1|Xi, θ) =
π1

π1 +
∑K

k=2 πk exp [⟨Xi − (µk + µ1)/2, Bk⟩]
(4)

and

ξik = P (Yi = k|Xi, θ) =
πk exp [⟨Xi − (µk + µ1)/2, Bk⟩]

π1 +
∑K

j=2 πj exp [⟨Xi − (µj + µ1)/2, Bj⟩]
(5)

for k ≥ 2, where

Bk = Jµk − µ1; Σ
−1
1 , . . . ,Σ−1

M K ∈ Rp1,×···×pM .

Note that we are considering the clustering problem, that is, we are interested in recovering Yi’s

and finding a method that minimizes the clustering error. It can be shown that the covariance

matrices Σi are nuisance parameters in the optimal clustering rule, i.e., the values of Σi are not

7

used in the optimal clustering rule if we already know Bk’s. To cover more general cases, we do

not impose conditions on Σi. Instead, we assume the sparsity condition on B; for Bk = [bJk]J ,

where J = (j1, . . . , jM) denotes an index of the tensor, we impose the condition bJ2 = · · · =
bJK = 0 for almost every J . In other words, if D = {J : bJk ̸= 0 for some k = 2, . . . ,K}, then
we assume that the number of elements in D is significantly smaller than p = p1p2 · · · pM . This

assumption comes from the belief that, in the high-dimensional setting, most of the variables

are not significant in estimation. The above expressions for ξik show that this assumption

reduces the computational cost and improves the estimation efficiency.

If we accept the fact that (B2, . . . , BK) minimizes the quantity

K∑
k=2

(⟨Bk, JBk,Σ1, . . . ,ΣM K⟩ − 2⟨Bk, µk − µ1⟩) ,

then it is reasonable to obtain the sequence of estimates B̂
(t+1)
k by solving the optimization

problem

argmin
B2,...,BK

K∑
k=2

(
⟨Bk, JBk, Σ̂

(t)
1 , . . . , Σ̂

(t)
M K⟩ − 2⟨Bk, µ̂

(t)
k − µ̂

(t)
1 ⟩
)
+ λ(t+1)

∑
J

(
K∑
k=2

(bJk)
2

)
,

where we added the lasso penalty term to satisfy the sparsity assumption to some extent. Using

these B̂
(t+1)
k , we can obtain the sequence ξ̂

(t+1)
ik by replacing the parameters in (4) and (5) with

their estimates. Then, the objective QDEEM is defined using ξ̂(t) as follows:

QDEEM(θ; θ̂(t)) =
n∑

i=1

K∑
k=1

ξ̂
(t)
ik [log πk + log p(Xi|µk,Σ1, . . . ,ΣM)].

In light of the sparsity assumption, ξ̂
(t)
ik can be computed based on the values of relatively

smaller variables.

In M-step, the parameters can be updated inductively from the proposed QDEEM function:

The estimates for πk and µk can be obtained by the formula

π̂
(t+1)
k =

1

n

n∑
i=1

ξ̂
(t+1)
ik and µ̂

(t+1)
k =

∑n
i=1 ξ̂

(t+1)
ik Xi∑n

i=1 ξ̂
(t+1)
ik

, k = 1, 2, . . . ,K.

Then given ξ
(t+1)
ik , we calculate the intermediate covariance matrices

⌣
Σ

(t+1)

j =
1

nqj

n∑
i=1

K∑
k=1

ξ̂
(t+1)
ik (Xi − µ̂T

k (t+ 1))(j)(Xi − µ̂T
k (t+ 1))T(j),

8

and the conditional variance of X1...1
i

(σ̂11
1)(t+1) =

1

n

n∑
i=1

K∑
k=1

ξ̂
(t+1)
ik (X1...1

i − (µ̂1...1
k)(t+1))2.

The target covariance estimator is given by scaling the intermediate covariances with (σ̂11
1)(t+1)

and (
⌣
σ
11

1)(t+1):

Σ̂
(t+1)
j =

1

(
⌣
σ
11

j)(t+1)

⌣
Σ

(t+1)

j if j ≥ 2,

(σ̂11
1)(t+1)

(
⌣
σ
11

1)(t+1)

⌣
Σ

(t+1)

1 if j = 1.

The general process is summarized in Algorithm 1 in the Appendix as our Figure 6.

Now we are interested in how this sequence of parameters θ̂(t) behave. In fact, under some

initialization condition, it can be seen that there are some constant C and 0 < κ < 1/2 such

that for large t, with a probability ≥ 1−O(
∏M

i=1 p
−1
i),

∥B̂(t) −B∥ ≤ C

√
sΣM

i=1 log pi
n

,

where s = o(
√

n/
∑

i log pi) and d0 is a measure of the difference between the initial value

θ̂(0) and the true parameter θ. This result implies that if the number of iterations t is

large, the DEEM estimator B̂(t) converges to the true parameter B. Here, the condition

s = o(
√
n/
∑

i log pi) means the sparsity assumption.

We consider the error rate of DEEM and the optimal clustering rule:

R(DEEM) = min
Π

P (Π(Ŷ DEEM
i ̸= Yi)) and R(Opt) = P (Ŷ opt

i ̸= Yi),

where Π denotes the permutation operator and Ŷ DEEM
i = argmaxk ξ̂ik. Here, the optimal

clustering rule is optimal in the sense that it minimizes the clustering error. From the result

above, we can show that if t is large, then with probability ≥ 1−O(
∏M

i=1 p
−1
i)

R(DEEM)−R(Opt) ≤ C
s
∑M

i=1 log pi
n

.

Consequently, this result shows that the error rate of DEEM converges to the error rate of the

optimal clustering rule if t is large.

9

3 Simulation Study

3.1 Data Generation

For our simulation studies, we follow the framework used in Qing Mai and Deng (2022). For

each setting, K denotes the number of mixture groups, and noise is generated as a M th-order

tensor:

Xi ∼
K∑
k=1

π∗
kTN(π

∗
k;Σ

∗
1, · · · ,Σ∗

M), i = 1, · · · , n (6)

For K − 1 mixture groups, the Xi is given as a given Bk plus the noise above. For 1 mixture

group, the values are simply the noise. Qing Mai and Deng designate two types of Σ∗
k:

Ω =

AR(ρ) :ωij = ρ|i−j|

CS(ρ) :ωij = ρ+ (1− ρ)1(i = j).

The covariance matrices are not sparse if they are set using the two formats above. For each

setting, we generate 100 independent datasets, the same number of replicates as used by the

authors, and present the mean error rate and standard deviation.

3.2 Settings

The settings are provided in Table 1. Note that, for B∗
k, the indices not included in the subscript

is 0. In other words, B∗
k is a sparse tensor. Both the DEEM and EM algorithms require K

to be given. λ is a tuning parameter for regularization; however, due to the long computation

time, we experiment with several different values of λ and set it at 0.05 instead of tuning

it for each setting. We encourage interested readers to try out two functions–tune K and

tune lambda–in the R package TensorClustering.

We choose four settings from the seven settings, because these settings are increasingly more

computationally expensive, and we believe that they demonstrate the advantage of the DEEM

algorithm compared to the classical EM algorithm in terms of accuracy, as shown in Table 2.

We also run three extra settings, which we call M8, M9, M10 to avoid confusion with the seven

settings in the paper. The results for these extra settings are shown in Tables 4 and 5.

10

Setting Parameters

M1 K = 2, p = 10 × 10 × 4,Σ∗
1 = CS(0.3),Σ∗

2 = AR(0.8),Σ∗
3 =

CS(0.3),B∗
2,[1:6,1,1] = 0.5

M3 K = 3, p = 10 × 10 × 4,Σ∗
1 = CS(0.3),Σ∗

2 = AR(0.8),Σ∗
3 =

CS(0.5),B∗
2,[1:6,1,1] = 0.5,B∗

3,[1:6,1,1] = −0.5

M4 K = 4, p = 10 × 10 × 4,Σ∗
1 = I10,Σ

∗
2 = AR(0.8),Σ∗

3 =
I4,B

∗
2,[1:6,1,1] = 0.8,B∗

3,[1:6,1,1] = −0.8

M5 K = 6, p = 10 × 10 × 4,Σ∗
1 = AR(0.9),Σ∗

2 = CS(0.6),Σ∗
3 =

AR(0.9),B∗
2,[1:6,1,1] = 0.6,B∗

3,[1:6,1,1] = 1.2,B∗
4,[1:6,1,1] =

1.8,B∗
5,[1:6,1,1] = 2.4,B∗

6,[1:6,1,1] = 3

M8 K = 2, p = 10× 10× 10,Σ∗
1 = AR(0.5),Σ∗

2 = CS(0.5),Σ∗
3 =

AR(0.5),B∗
2,[1:6,1,1] = 1.5

M9 K = 2, p = 10 × 10 × 10,Σ∗
1 = I10,Σ

∗
2 = I10,Σ

∗
3 =

I10,B
∗
2,[1:6,1,1] = 1.5

M10 K = 2, p = 10 × 10 × 4 × 4 × 4,Σ∗
1 = AR(0.5),Σ∗

2 =
CS(0.5),Σ∗

3 = AR(0.5),Σ∗
4 = I4,Σ

∗
5 = I4,B

∗
2,[1:6,1,1,1,1] = 5

Table 1: Simulation settings

3.3 Metrics

Note that it is as straightforward to calculate the mean error rate for a clustering problem as it

is for a classification problem. Both methods return labels for the groups; however, the group

labels do not matter. For example, if there are five observations and their true group labels are

(1, 1, 2, 2, 2) and the methods return (2, 2, 1, 1, 1), the error rate should be 0. In the paper, the

authors explain that the mean clustering error rate is calculated by:

min
Π

1

n

n∑
i=1

1(Ŷi ̸= Π(Yi)) over all possible permutations Π : {1, · · · , } 7→ {1, · · · ,K}

We create a function to permute the true labels, compare the estimated labels and the true

labels, and return the lowest error rate. To compare the speed of the two methods, we also

record the computation time. Tables 3 and 5 provides the mean computation time and standard

error (in parentheses) for each setting.

3.4 External R Packages and Functions

For the DEEM algorithm, we use the function DEEM; for the standard EM algorithm, we

use the function TGMM. Both functions are from the R package TensorClustering. We use the

Trnorm function from the R package Tlasso to generate tensor noise with designated covariance

matrices. We use the permutations function in the gtools package to permute true labels. In

short, be sure to install the three R packages: TensorClustering, Tlasso, and gtools if you would

11

like to reproduce our simulation.

3.5 Simulation result

The error rates and computation time are shown in Tables 2 and 3. It is clear that DEEM has

lower mean error rates in all four settings. The error rates are in general higher than those

given in the article, possibly because the hyperparameters are not tuned for each setting in our

case.

The computation time tells a different story, however. As seen in Table 3, DEEM is not

always the winner in terms of time. As the setting becomes more complicated and estimating

the clusters becomes more challenging, it takes longer for DEEM to converge. For setting M5,

it is possible that DEEM reached the maximum iterations for some runs.

Setting DEEM EM

M1 0.41 (0.05) 0.45 (0.03)
M3 0.46 (0.09) 0.56 (0.05)
M4 0.35 (0.03) 0.57 (0.06)
M5 0.31 (0.11) 0.43 (0.06)

Table 2: Error Rates from 100 Replicates

Setting DEEM EM

M1 0.72 (0.45) 0.93 (0.39)
M3 13.95 (7.78) 7.74 (3.99)
M4 15.8 (0.81) 21.9 (9.68)
M5 332.96 (124.38) 14.66 (5.88)

Table 3: Computation Time (seconds) from 100 Replicates

Next, we transform the values in the tables into figures. As shown in Figure 4, DEEM

always has lower mean error rates. However, as the model becomes complicated, DEEM’s error

rates become more varied, even though the mean rate is still lower. In Figure 5, the story seems

more complicated. (Note that we cannot use the same y-axis for all four plots, because the

computation time for DEEM for M5 is so long, which would make some of the boxes very small

and not informative.) For the two settings M1 and M4, DEEM has a lower computation time.

For M3, the computation time for DEEM is much more varied, and EM has an overall shorter

computation time. For M5, DEEM has a very long computation time; in fact, the 100 replicates

took almost 10 hours. It is unclear if the reduced error rate is worth the computational cost.

12

Figure 4: Boxplots of Mean Error Rates from 100 Replicates

Figure 5: Boxplots of Mean Computation Time (in seconds) from 100 Replicates

In terms of the extra settings, we noticed that the error for DEEM is much lower than

EM for M8, for which we set two clusters with the covariance matrices to have a moderate

correlation. For M9, we let the setting be an easy case, since the covariance matrices are all

identity matrices, and DEEM still has a much lower mean error rate than EM. For M10, we

use a fifth-order tensor and make the estimating task an easy one. As seen in Table 4, DEEM

13

has a much lower mean error rate than EM, although its computation time is again quite long.

One recurrent problem from the simulation is that DEEM has a much longer running time

than EM. We leave this question about DEEM’s computation time to interested readers.

Setting DEEM EM

M8 0.28 (0.11) 0.45 (0.03)
M9 0.18 (0.05) 0.34 (0.10)
M10 0.0003 (0.002) 0.31 (0.13)

Table 4: Error Rates from 100 Replicates

Setting DEEM EM

M8 23.7 (4,3) 0.17 (0.07)
M9 7.99 (1.88) 0.32 (0.09)
M10 72.8 (211.41) 1.51 (0.08)

Table 5: Computation Time (seconds) from 100 Replicates

4 Summary

In this blogpost, we review a new method proposed by Qing Mai and Deng (2022), which is

essentially an upgraded version of the classical EM algorithm. This new method, DEEM, tends

to have lower error rates on tensor data. However, despite the paper’s claim that the enhanced

M step in the DEEM algorithm facilitates fast covariance estimation, we have encountered

situations where the running time could be prohibitive. While DEEM proves to be efficient and

effective in handling tensor data, there remains potential for further enhancement.

References

Dempster, A., Laird, N. and Rubin, D. (1977) Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society, 39, 1–22.

Kolda, T. G. and Bader, B. W. (2009) Tensor decompositions and applications. SIAM Review,
51, 455–500. URLhttps://doi.org/10.1137/07070111X.

Qing Mai, Xin Zhang, Y. P. and Deng, K. (2022) A doubly enhanced em algorithm for model-
based tensor clustering. Journal of the American Statistical Association, 117, 2120–2134.

Yang, M.-S., Lai, C.-Y. and Lin, C.-Y. (2012) A robust em clustering algorithm for gaussian
mixture models. Pattern Recognition, 45, 3950–3961.

14

Appendix

Figure 6: DEEM algorithm

15

